Data Science

🚀 Outstanding Guide to The Story Behind The 68 95 997 Rule In Normal Distribution That Experts Don't Want You to Know!

Hey there! Ready to dive into The Story Behind The 68 95 997 Rule In Normal Distribution? This friendly guide will walk you through everything step-by-step with easy-to-follow examples. Perfect for beginners and pros alike!

SuperML Team
Share this article

Share:

🚀

💡 Pro tip: This is one of those techniques that will make you look like a data science wizard! The Normal Distribution and the 68-95-99.7 Rule - Made Simple!

The normal distribution, also known as the Gaussian distribution, is a fundamental concept in statistics. The 68-95-99.7 rule, sometimes called the empirical rule, is a simple yet powerful tool for understanding the spread of data in a normal distribution. This rule helps us interpret the standard deviation and provides a quick way to estimate the probability of data falling within certain ranges.

Ready for some cool stuff? Here’s how we can tackle this:

import numpy as np
import matplotlib.pyplot as plt

# Generate data for a normal distribution
mu, sigma = 0, 1
x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100)
y = 1/(sigma * np.sqrt(2 * np.pi)) * np.exp(-(x - mu)**2 / (2 * sigma**2))

# Plot the normal distribution
plt.figure(figsize=(10, 6))
plt.plot(x, y)
plt.title('Normal Distribution')
plt.xlabel('Value')
plt.ylabel('Probability Density')
plt.grid(True)
plt.show()

🚀

🎉 You’re doing great! This concept might seem tricky at first, but you’ve got this! Understanding Standard Deviation - Made Simple!

Standard deviation is a measure of the spread of data in a distribution. In a normal distribution, it determines the width of the bell curve. The 68-95-99.7 rule is based on the number of standard deviations from the mean.

Here’s a handy trick you’ll love! Here’s how we can tackle this:

import numpy as np
import matplotlib.pyplot as plt

# Generate random data from a normal distribution
data = np.random.normal(loc=0, scale=1, size=1000)

# Calculate mean and standard deviation
mean = np.mean(data)
std_dev = np.std(data)

# Plot histogram with normal distribution overlay
plt.figure(figsize=(10, 6))
plt.hist(data, bins=30, density=True, alpha=0.7, color='skyblue')
x = np.linspace(mean - 4*std_dev, mean + 4*std_dev, 100)
plt.plot(x, 1/(std_dev * np.sqrt(2 * np.pi)) * np.exp(-(x - mean)**2 / (2 * std_dev**2)), 
         linewidth=2, color='red')
plt.title(f'Normal Distribution (Mean: {mean:.2f}, Std Dev: {std_dev:.2f})')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()

🚀

Cool fact: Many professional data scientists use this exact approach in their daily work! The 68% Rule - Made Simple!

According to the 68-95-99.7 rule, approximately 68% of the data falls within one standard deviation of the mean in a normal distribution. This means that if we take any normal distribution and look at the area within one standard deviation on either side of the mean, we’ll find about 68% of the total data.

Don’t worry, this is easier than it looks! Here’s how we can tackle this:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

# Set up the plot
plt.figure(figsize=(10, 6))
x = np.linspace(-4, 4, 1000)
y = norm.pdf(x, 0, 1)

# Plot the normal distribution
plt.plot(x, y, 'b', linewidth=2)

# Shade the area within 1 standard deviation
x_filled = np.linspace(-1, 1, 1000)
y_filled = norm.pdf(x_filled, 0, 1)
plt.fill_between(x_filled, y_filled, color='skyblue', alpha=0.5)

plt.title('68% Rule: Area within 1 Standard Deviation')
plt.xlabel('Standard Deviations from Mean')
plt.ylabel('Probability Density')
plt.grid(True)

# Add text to show the percentage
plt.text(0, 0.2, '68%', horizontalalignment='center', fontsize=20)

plt.show()

# Calculate the exact percentage
exact_percentage = (norm.cdf(1) - norm.cdf(-1)) * 100
print(f"Exact percentage within 1 standard deviation: {exact_percentage:.2f}%")

🚀

🔥 Level up: Once you master this, you’ll be solving problems like a pro! The 95% Rule - Made Simple!

Extending our understanding, the 95% rule states that approximately 95% of the data in a normal distribution falls within two standard deviations of the mean. This provides a wider range that encompasses even more of the data.

Let me walk you through this step by step! Here’s how we can tackle this:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

# Set up the plot
plt.figure(figsize=(10, 6))
x = np.linspace(-4, 4, 1000)
y = norm.pdf(x, 0, 1)

# Plot the normal distribution
plt.plot(x, y, 'b', linewidth=2)

# Shade the area within 2 standard deviations
x_filled = np.linspace(-2, 2, 1000)
y_filled = norm.pdf(x_filled, 0, 1)
plt.fill_between(x_filled, y_filled, color='lightgreen', alpha=0.5)

plt.title('95% Rule: Area within 2 Standard Deviations')
plt.xlabel('Standard Deviations from Mean')
plt.ylabel('Probability Density')
plt.grid(True)

# Add text to show the percentage
plt.text(0, 0.2, '95%', horizontalalignment='center', fontsize=20)

plt.show()

# Calculate the exact percentage
exact_percentage = (norm.cdf(2) - norm.cdf(-2)) * 100
print(f"Exact percentage within 2 standard deviations: {exact_percentage:.2f}%")

🚀 The 99.7% Rule - Made Simple!

The final part of the 68-95-99.7 rule states that approximately 99.7% of the data falls within three standard deviations of the mean. This encompasses almost all of the data in a normal distribution, leaving only about 0.3% in the extreme tails.

Don’t worry, this is easier than it looks! Here’s how we can tackle this:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

# Set up the plot
plt.figure(figsize=(10, 6))
x = np.linspace(-4, 4, 1000)
y = norm.pdf(x, 0, 1)

# Plot the normal distribution
plt.plot(x, y, 'b', linewidth=2)

# Shade the area within 3 standard deviations
x_filled = np.linspace(-3, 3, 1000)
y_filled = norm.pdf(x_filled, 0, 1)
plt.fill_between(x_filled, y_filled, color='salmon', alpha=0.5)

plt.title('99.7% Rule: Area within 3 Standard Deviations')
plt.xlabel('Standard Deviations from Mean')
plt.ylabel('Probability Density')
plt.grid(True)

# Add text to show the percentage
plt.text(0, 0.2, '99.7%', horizontalalignment='center', fontsize=20)

plt.show()

# Calculate the exact percentage
exact_percentage = (norm.cdf(3) - norm.cdf(-3)) * 100
print(f"Exact percentage within 3 standard deviations: {exact_percentage:.2f}%")

🚀 Visualizing the 68-95-99.7 Rule - Made Simple!

Let’s create a visual representation of the 68-95-99.7 rule by overlaying all three ranges on a single normal distribution plot. This will help us see how these percentages relate to each other and to the overall shape of the distribution.

Let me walk you through this step by step! Here’s how we can tackle this:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

# Set up the plot
plt.figure(figsize=(12, 8))
x = np.linspace(-4, 4, 1000)
y = norm.pdf(x, 0, 1)

# Plot the normal distribution
plt.plot(x, y, 'k', linewidth=2)

# Shade the areas for 68%, 95%, and 99.7%
plt.fill_between(x, y, where=(x >= -1) & (x <= 1), color='red', alpha=0.3, label='68%')
plt.fill_between(x, y, where=(x >= -2) & (x <= 2), color='yellow', alpha=0.3, label='95%')
plt.fill_between(x, y, where=(x >= -3) & (x <= 3), color='blue', alpha=0.3, label='99.7%')

plt.title('Visualization of the 68-95-99.7 Rule')
plt.xlabel('Standard Deviations from Mean')
plt.ylabel('Probability Density')
plt.legend()
plt.grid(True)

# Add text to show the percentages
plt.text(0, 0.2, '68%', horizontalalignment='center', fontsize=16, color='red')
plt.text(0, 0.1, '95%', horizontalalignment='center', fontsize=16, color='orange')
plt.text(0, 0.05, '99.7%', horizontalalignment='center', fontsize=16, color='blue')

plt.show()

🚀 Historical Context - Made Simple!

The 68-95-99.7 rule has its roots in the work of Carl Friedrich Gauss, who developed the concept of the normal distribution in the early 19th century. However, the rule itself was formalized later as statisticians sought ways to quickly interpret and communicate the properties of normal distributions.

Here’s where it gets exciting! Here’s how we can tackle this:

import matplotlib.pyplot as plt
from matplotlib.patches import Circle, Rectangle
import numpy as np

fig, ax = plt.subplots(figsize=(10, 6))

# Create a timeline
ax.plot([1800, 2023], [0, 0], 'k-', linewidth=2)

# Add key events
events = [
    (1809, "Gauss publishes 'Theoria motus corporum coelestium'"),
    (1894, "Karl Pearson coins the term 'standard deviation'"),
    (1920, "Fisher introduces the concept of degrees of freedom"),
    (1960, "68-95-99.7 rule becomes widely taught in statistics courses")
]

for year, event in events:
    ax.add_patch(Circle((year, 0), 5, facecolor='blue'))
    ax.text(year, 0.1, str(year), ha='center')
    ax.text(year, -0.1, event, ha='center', va='top', wrap=True)

ax.set_xlim(1800, 2023)
ax.set_ylim(-0.5, 0.5)
ax.axis('off')

plt.title("Timeline of the 68-95-99.7 Rule and Normal Distribution")
plt.tight_layout()
plt.show()

🚀 Real-Life Example: Height Distribution - Made Simple!

One common application of the 68-95-99.7 rule is in understanding human height distributions. Let’s consider adult male heights, which often follow a normal distribution with a mean of about 70 inches (177.8 cm) and a standard deviation of about 3 inches (7.62 cm).

Ready for some cool stuff? Here’s how we can tackle this:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

# Parameters for male height distribution (in inches)
mean_height = 70
std_dev_height = 3

# Generate height data
heights = np.random.normal(mean_height, std_dev_height, 10000)

# Create the plot
plt.figure(figsize=(12, 6))
plt.hist(heights, bins=50, density=True, alpha=0.7, color='skyblue')

# Plot the theoretical normal distribution
x = np.linspace(mean_height - 4*std_dev_height, mean_height + 4*std_dev_height, 100)
plt.plot(x, norm.pdf(x, mean_height, std_dev_height), 'r-', lw=2)

# Add vertical lines for standard deviations
for i, color in zip(range(1, 4), ['green', 'orange', 'red']):
    plt.axvline(mean_height + i*std_dev_height, color=color, linestyle='--', alpha=0.5)
    plt.axvline(mean_height - i*std_dev_height, color=color, linestyle='--', alpha=0.5)

plt.title('Distribution of Adult Male Heights')
plt.xlabel('Height (inches)')
plt.ylabel('Probability Density')
plt.grid(True)

# Add text for percentages
plt.text(mean_height, 0.05, '68%', ha='center', va='bottom', color='green')
plt.text(mean_height, 0.04, '95%', ha='center', va='bottom', color='orange')
plt.text(mean_height, 0.03, '99.7%', ha='center', va='bottom', color='red')

plt.show()

# Calculate percentages within each range
within_1_std = np.sum((heights >= mean_height - std_dev_height) & (heights <= mean_height + std_dev_height)) / len(heights) * 100
within_2_std = np.sum((heights >= mean_height - 2*std_dev_height) & (heights <= mean_height + 2*std_dev_height)) / len(heights) * 100
within_3_std = np.sum((heights >= mean_height - 3*std_dev_height) & (heights <= mean_height + 3*std_dev_height)) / len(heights) * 100

print(f"Percentage within 1 standard deviation: {within_1_std:.2f}%")
print(f"Percentage within 2 standard deviations: {within_2_std:.2f}%")
print(f"Percentage within 3 standard deviations: {within_3_std:.2f}%")

🚀 Real-Life Example: Reaction Times - Made Simple!

Another application of the 68-95-99.7 rule can be found in cognitive psychology, specifically in the study of reaction times. Reaction times often follow a normal distribution, and understanding this distribution can be crucial in fields like human-computer interaction and traffic safety.

Here’s a handy trick you’ll love! Here’s how we can tackle this:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

# Parameters for reaction time distribution (in milliseconds)
mean_rt, std_dev_rt = 250, 50

# Generate reaction time data
reaction_times = np.random.normal(mean_rt, std_dev_rt, 10000)

# Create the plot
plt.figure(figsize=(12, 6))
plt.hist(reaction_times, bins=50, density=True, alpha=0.7, color='lightgreen')

# Plot the theoretical normal distribution
x = np.linspace(mean_rt - 4*std_dev_rt, mean_rt + 4*std_dev_rt, 100)
plt.plot(x, norm.pdf(x, mean_rt, std_dev_rt), 'r-', lw=2)

# Add vertical lines for standard deviations
for i, color in zip(range(1, 4), ['blue', 'purple', 'orange']):
    plt.axvline(mean_rt + i*std_dev_rt, color=color, linestyle='--', alpha=0.5)
    plt.axvline(mean_rt - i*std_dev_rt, color=color, linestyle='--', alpha=0.5)

plt.title('Distribution of Reaction Times')
plt.xlabel('Reaction Time (milliseconds)')
plt.ylabel('Probability Density')
plt.grid(True)

# Add text for percentages
for i, (text, color) in enumerate(zip(['68%', '95%', '99.7%'], ['blue', 'purple', 'orange'])):
    plt.text(mean_rt, 0.004 - i*0.001, text, ha='center', va='bottom', color=color)

plt.show()

# Calculate percentages within each range
for i in range(1, 4):
    within_std = np.sum(np.abs(reaction_times - mean_rt) <= i*std_dev_rt) / len(reaction_times) * 100
    print(f"Percentage within {i} standard deviation(s): {within_std:.2f}%")

🚀 Practical Applications of the 68-95-99.7 Rule - Made Simple!

The 68-95-99.7 rule finds applications in various fields, including quality control, scientific research, and data analysis. It provides a quick way to assess the likelihood of certain outcomes or to identify unusual events.

Ready for some cool stuff? Here’s how we can tackle this:

import numpy as np
import matplotlib.pyplot as plt

# Function to simulate a manufacturing process
def simulate_process(mean, std_dev, n_samples):
    return np.random.normal(mean, std_dev, n_samples)

# Set parameters
target = 100  # Target value
tolerance = 2  # Tolerance range
mean = 100
std_dev = 1
n_samples = 1000

# Simulate the process
measurements = simulate_process(mean, std_dev, n_samples)

# Plot the results
plt.figure(figsize=(12, 6))
plt.hist(measurements, bins=50, density=True, alpha=0.7)
plt.axvline(target, color='r', linestyle='--', label='Target')
plt.axvline(target - tolerance, color='g', linestyle='--', label='Lower Limit')
plt.axvline(target + tolerance, color='g', linestyle='--', label='Upper Limit')

plt.title('Quality Control in Manufacturing')
plt.xlabel('Measurement')
plt.ylabel('Frequency')
plt.legend()

# Calculate the percentage within tolerance
within_tolerance = np.sum((measurements >= target - tolerance) & 
                          (measurements <= target + tolerance)) / n_samples * 100

plt.text(target, 0.2, f'{within_tolerance:.1f}% within tolerance', 
         ha='center', va='bottom', bbox=dict(facecolor='white', alpha=0.5))

plt.show()

🚀 Limitations and Considerations - Made Simple!

While the 68-95-99.7 rule is a powerful tool, it’s important to remember that it applies strictly to normal distributions. Not all data follows a normal distribution, and applying this rule to non-normal data can lead to incorrect conclusions.

Let me walk you through this step by step! Here’s how we can tackle this:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm, skewnorm

# Generate data for normal and skewed distributions
x = np.linspace(-5, 5, 1000)
y_normal = norm.pdf(x, 0, 1)
y_skewed = skewnorm.pdf(x, 5)

# Plot the distributions
plt.figure(figsize=(12, 6))
plt.plot(x, y_normal, label='Normal Distribution')
plt.plot(x, y_skewed, label='Skewed Distribution')

plt.title('Comparison of Normal and Skewed Distributions')
plt.xlabel('Value')
plt.ylabel('Probability Density')
plt.legend()
plt.grid(True)

# Add text to highlight the difference
plt.text(0, 0.2, '68-95-99.7 rule\napplies here', ha='center', va='center', 
         bbox=dict(facecolor='white', alpha=0.5))
plt.text(2, 0.2, '68-95-99.7 rule\ndoes not apply', ha='center', va='center', 
         bbox=dict(facecolor='white', alpha=0.5))

plt.show()

🚀 Testing for Normality - Made Simple!

Before applying the 68-95-99.7 rule, it’s crucial to verify that your data follows a normal distribution. There are several statistical tests and visual methods to assess normality.

Here’s a handy trick you’ll love! Here’s how we can tackle this:

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

# Generate some sample data
np.random.seed(0)
normal_data = np.random.normal(0, 1, 1000)
non_normal_data = np.random.exponential(1, 1000)

# Function to create Q-Q plot
def create_qq_plot(data, title):
    plt.figure(figsize=(8, 6))
    stats.probplot(data, dist="norm", plot=plt)
    plt.title(title)
    plt.show()

# Create Q-Q plots
create_qq_plot(normal_data, "Q-Q Plot: Normal Distribution")
create_qq_plot(non_normal_data, "Q-Q Plot: Non-Normal Distribution")

# Perform Shapiro-Wilk test
_, p_value_normal = stats.shapiro(normal_data)
_, p_value_non_normal = stats.shapiro(non_normal_data)

print(f"Shapiro-Wilk test p-value (normal data): {p_value_normal:.4f}")
print(f"Shapiro-Wilk test p-value (non-normal data): {p_value_non_normal:.4f}")

🚀 Beyond the 68-95-99.7 Rule - Made Simple!

While the 68-95-99.7 rule provides a quick reference for normal distributions, more precise calculations can be made using the cumulative distribution function (CDF) of the normal distribution.

Here’s a handy trick you’ll love! Here’s how we can tackle this:

import numpy as np
from scipy.stats import norm
import matplotlib.pyplot as plt

# Define the standard normal distribution
mean, std_dev = 0, 1

# Calculate probabilities for different ranges
probabilities = [
    norm.cdf(1) - norm.cdf(-1),
    norm.cdf(2) - norm.cdf(-2),
    norm.cdf(3) - norm.cdf(-3),
    norm.cdf(4) - norm.cdf(-4)
]

# Plot the results
plt.figure(figsize=(10, 6))
plt.bar(range(1, 5), probabilities, tick_label=['±1σ', '±2σ', '±3σ', '±4σ'])
plt.title('Probability Within Different Standard Deviation Ranges')
plt.xlabel('Range (in standard deviations)')
plt.ylabel('Probability')
plt.ylim(0, 1)

for i, prob in enumerate(probabilities):
    plt.text(i+1, prob, f'{prob:.4f}', ha='center', va='bottom')

plt.show()

# Print the exact probabilities
for i, prob in enumerate(probabilities, 1):
    print(f"Probability within ±{i}σ: {prob:.4f}")

🚀 Conclusion and Key Takeaways - Made Simple!

The 68-95-99.7 rule is a powerful tool for understanding and interpreting data in normal distributions. It provides a quick way to estimate probabilities and identify unusual events. Remember these key points:

  1. The rule applies only to normal distributions.
  2. It’s an approximation, but a very good one for many practical purposes.
  3. Always check for normality before applying the rule.
  4. For more precise calculations, use the cumulative distribution function.

Let’s break this down together! Here’s how we can tackle this:

import matplotlib.pyplot as plt
import numpy as np

# Create a simple visual summary
fig, ax = plt.subplots(figsize=(12, 6))

# Draw the normal distribution curve
x = np.linspace(-4, 4, 1000)
y = 1 / (np.sqrt(2 * np.pi)) * np.exp(-x**2 / 2)
ax.plot(x, y, 'k-', lw=2)

# Fill areas for 68%, 95%, and 99.7%
ax.fill_between(x, y, where=(x >= -1) & (x <= 1), color='red', alpha=0.3)
ax.fill_between(x, y, where=(x >= -2) & (x <= 2), color='green', alpha=0.3)
ax.fill_between(x, y, where=(x >= -3) & (x <= 3), color='blue', alpha=0.3)

# Add labels
ax.text(0, 0.2, '68%', ha='center', va='center', fontsize=16)
ax.text(0, 0.1, '95%', ha='center', va='center', fontsize=16)
ax.text(0, 0.05, '99.7%', ha='center', va='center', fontsize=16)

ax.set_title('The 68-95-99.7 Rule', fontsize=20)
ax.set_xlabel('Standard Deviations from Mean', fontsize=14)
ax.set_ylabel('Probability Density', fontsize=14)
ax.set_ylim(0, 0.45)

plt.tight_layout()
plt.show()

🚀 Additional Resources - Made Simple!

For those interested in delving deeper into the topic of normal distributions and statistical analysis, here are some recommended resources:

  1. “The Art of Statistics: Learning from Data” by David Spiegelhalter
  2. “Statistics” by David Freedman, Robert Pisani, and Roger Purves
  3. “An Introduction to Statistical Learning” by Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani

For more technical and cool treatments:

  1. “Statistical Inference” by George Casella and Roger L. Berger
  2. “Probability Theory: The Logic of Science” by E.T. Jaynes

Online resources:

  1. Khan Academy’s Statistics and Probability course
  2. Coursera’s “Statistics with R Specialization” by Duke University

For the latest research on statistical methods and their applications, you can explore papers on arXiv.org in the Statistics category: https://arxiv.org/list/stat/recent

Remember to critically evaluate any information you find and consider how it applies to your specific context and needs.

Back to Blog

Related Posts

View All Posts »